Numerical Simulation of Cushioning Problem for Blunt Bodies Using Boundary Element Method
نویسندگان
چکیده
منابع مشابه
A novel boundary condition for the simulation of the submerged bodies using lattice boltzmann method
In this study, we proposed a novel scheme for the implementation of the no-slip boundary condition in thelattice Boltzmann method (LBM) . In detail , we have substituted the classical bounce-back idea by the direct immersed boundary specification . In this way we construct the equilibrium density functions in such a way that it feels the no-slip boundaries . Therefore , in fact a kind of equili...
متن کاملa novel boundary condition for the simulation of the submerged bodies using lattice boltzmann method
in this study, we proposed a novel scheme for the implementation of the no-slip boundary condition in thelattice boltzmann method (lbm) . in detail , we have substituted the classical bounce-back idea by the direct immersed boundary specification . in this way we construct the equilibrium density functions in such a way that it feels the no-slip boundaries . therefore , in fact a kind of equili...
متن کاملNumerical Simulation of Two- Dimensional Complex Flows around Bluff Bodies Using the Immersed Boundary Method
This paper presents a two-dimensional numerical simulation of flows around different bluff bodies, at Re = 100 and 200, using the Immersed Boundary (IB) method, as a sequence of a previous work. The force density term required by the IB method is obtained with the Virtual Physical Model (VPM). Simulations were carried out for two circular cylinders of different diameter in tandem, two cylinders...
متن کاملNumerical Solution for Boundary Value Problem Using Finite Difference Method
In this paper, Numerical Methods for solving ordinary differential equations, beginning with basic techniques of finite difference methods for linear boundary value problem is investigated. Numerical solution is found for the boundary value problem using finite difference method and the results are compared with analytical solution. MATLAB coding is developed for the finite difference method. T...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Polish Maritime Research
سال: 2018
ISSN: 2083-7429
DOI: 10.2478/pomr-2018-0028